تخمین ضریب فشار جانبی ماسه ها با استفاده از آزمایش نفوذ مخروط در محفظه کالیبراسیون و شبکه عصبی مصنوعی

Authors

  • نوید بشارت دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران
Abstract:

تعیین دقیق و مناسب پارامترهای خاک همواره در طراحی‌های ژئوتکنیکی مورد توجه بوده است. پیش بینی دقیق پارامترهای تاثیرگذار ماسه از آزمایشات برجا نظیر (CPT)، یکی از چالشی‌ترین مسایل در مهندسی ژئوتکنیک است. در این تحقیق با استفاده از نتایج آزمایش کالیبراسیون نفوذ مخروط که در دانشگاه‌ها و موسسات معتبر انجام شده‌اند و همچنین سیستمی متشکل از سه نوع شبکه عصبی مصنوعی، پارامتر ضریب فشار جانبی ماسه در حالت سکون(K0) برای انواع مختلف ماسه‌های موجود در پایگاه داده جمع‌آوری شده، به طور نسبتا دقیقی پیش بینی شده است. در این سیستم مجموعه‌ای از شبکه‌های عصبی به طور سری وظایفی انجام می‌دهند و در نهایت با ترکیب مناسب این شبکه‌ها، سیستم قادر خواهد بود که پارامتر(K0) را با دقت مناسب برای خاک‌های ماسه‌ای مورد بررسی در پایگاه داده، پیش‌بینی نماید. در این روش از شبکه عصبی خودسازمانده (SOM) برای خوشه‌بندی مناسب داده‌ها، از شبکه عصبی احتمالاتی (PNN) برای کلاسه‌بندی ماسه و در نهایت از شبکه عصبی چندلایه با الگوریتم پس انتشار(BP) برای مدل نهایی، استفاده می‌گردد. جزییات ایجاد و به کارگیری چنین سیستمی در مقاله شرح داده شده و همچنین در پایان، نتایج بدست آمده از این سیستم با نتایج سایر محققین مقایسه گردیده است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تخمین ضریب پخش طولی آلاینده ها در مجاری روباز با استفاده از شبکه عصبی مصنوعی

انتقال طولی آلاینده ها یکی از مراحل مهم در فرآیند رقیق سازی آلاینده ها میباشد که شناخت آن از اهمیت ویژهایبرخوردار است. دشواری اندازه گیری ضریب انتشار طولی در رودخانهها نیاز به استفاده از روشهای مناسب مدلسازیدر پیشبینی این ضریب را بیشتر میکند. یکی از روشهای کارآمد مدل سازی شبکه عصبی مصنوعی است که یکی ازتکنیکهای هوش مصنوعی محسوب میشود. در این مدل بدون استفاده از معادلات پیچیده غیرخطی، میتوان دینا...

full text

تخمین استحکام فشاری ماسه ریخته‌گری در مقادیر مختلف رطوبت با استفاده از شبکه عصبی مصنوعی

کیفیت قطعات ریخته‌گری درقالب‌گیری ماسه به‌طور چشم‌گیری به خواص ماسه‌ی مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، از شبکه عصبی مصنوعی برای بررسی تاثیر میزان رطوبت در استحکام فشاری ماسه استفاده شده است. آزمایش‌های عملی متعددی برای به‌دست آوردن داده‌های مورد ن...

full text

تخمین استحکام فشاری ماسه ریخته‌گری در مقادیر مختلف رطوبت با استفاده از شبکه عصبی مصنوعی

کیفیت قطعات ریخته‌گری درقالب‌گیری ماسه به‌طور چشم‌گیری به خواص ماسه‌ی مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، از شبکه عصبی مصنوعی برای بررسی تاثیر میزان رطوبت در استحکام فشاری ماسه استفاده شده است. آزمایش‌های عملی متعددی برای به‌دست آوردن داده‌های مورد ن...

full text

تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال

The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...

full text

تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال

The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...

full text

تخمین ضریب پخش طولی آلاینده ها در مجاری روباز با استفاده از شبکه عصبی مصنوعی

انتقال طولی آلاینده ها یکی از مراحل مهم در فرآیند رقیق سازی آلاینده ها میباشد که شناخت آن از اهمیت ویژهایبرخوردار است. دشواری اندازه گیری ضریب انتشار طولی در رودخانهها نیاز به استفاده از روشهای مناسب مدلسازیدر پیشبینی این ضریب را بیشتر میکند. یکی از روشهای کارآمد مدل سازی شبکه عصبی مصنوعی است که یکی ازتکنیکهای هوش مصنوعی محسوب میشود. در این مدل بدون استفاده از معادلات پیچیده غیرخطی، میتوان دینا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 49  issue 1

pages  67- 80

publication date 2017-05-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023